Telegram Group & Telegram Channel
This media is not supported in your browser
VIEW IN TELEGRAM
๐Š-๐Œ๐ž๐š๐ง๐ฌ ๐‚๐ฅ๐ฎ๐ฌ๐ญ๐ž๐ซ๐ข๐ง๐  ๐„๐ฑ๐ฉ๐ฅ๐š๐ข๐ง๐ž๐ - ๐Ÿ๐จ๐ซ ๐›๐ž๐ ๐ข๐ง๐ง๐ž๐ซ๐ฌ

๐–๐ก๐š๐ญ ๐ข๐ฌ ๐Š-๐Œ๐ž๐š๐ง๐ฌ?
Itโ€™s an unsupervised machine learning algorithm that automatically groups your data into K similar clusters without labels. It finds hidden patterns using distance-based similarity.

๐ˆ๐ง๐ญ๐ฎ๐ข๐ญ๐ข๐ฏ๐ž ๐ž๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž:
You run a mall. Your data has:
โ€บ Age
โ€บ Annual Income
โ€บ Spending Score

K-Means can divide customers into:
โคท Budget Shoppers
โคท Mid-Range Customers
โคท High-End Spenders

๐‡๐จ๐ฐ ๐ข๐ญ ๐ฐ๐จ๐ซ๐ค๐ฌ:
โ‘  Choose the number of clusters K
โ‘ก Randomly initialize K centroids
โ‘ข Assign each point to its nearest centroid
โ‘ฃ Move centroids to the mean of their assigned points
โ‘ค Repeat until centroids donโ€™t move (convergence)

๐Ž๐›๐ฃ๐ž๐œ๐ญ๐ข๐ฏ๐ž:
Minimize the total squared distance between data points and their cluster centroids
๐‰ = ฮฃโ€–๐ฑแตข - ฮผโฑผโ€–ยฒ
Where ๐ฑแตข = data point, ฮผโฑผ = cluster center

๐‡๐จ๐ฐ ๐ญ๐จ ๐ฉ๐ข๐œ๐ค ๐Š:
Use the Elbow Method
โคท Plot K vs. total within-cluster variance
โคท The โ€œelbowโ€ in the curve = ideal number of clusters

๐‚๐จ๐๐ž ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž (๐’๐œ๐ข๐ค๐ข๐ญ-๐‹๐ž๐š๐ซ๐ง):

from sklearn.cluster import KMeans
X = [[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]]
model = KMeans(n_clusters=2, random_state=0)
model.fit(X)
print(model.labels_)
print(model.cluster_centers_)


๐๐ž๐ฌ๐ญ ๐”๐ฌ๐ž ๐‚๐š๐ฌ๐ž๐ฌ:
โคท Customer segmentation
โคท Image compression
โคท Market analysis
โคท Social network analysis

๐‹๐ข๐ฆ๐ข๐ญ๐š๐ญ๐ข๐จ๐ง๐ฌ:
โ€บ Sensitive to outliers
โ€บ Requires you to predefine K
โ€บ Works best with spherical clusters

https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A ๐Ÿ“ฑ
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/CodeProgrammer/3768
Create:
Last Update:

๐Š-๐Œ๐ž๐š๐ง๐ฌ ๐‚๐ฅ๐ฎ๐ฌ๐ญ๐ž๐ซ๐ข๐ง๐  ๐„๐ฑ๐ฉ๐ฅ๐š๐ข๐ง๐ž๐ - ๐Ÿ๐จ๐ซ ๐›๐ž๐ ๐ข๐ง๐ง๐ž๐ซ๐ฌ

๐–๐ก๐š๐ญ ๐ข๐ฌ ๐Š-๐Œ๐ž๐š๐ง๐ฌ?
Itโ€™s an unsupervised machine learning algorithm that automatically groups your data into K similar clusters without labels. It finds hidden patterns using distance-based similarity.

๐ˆ๐ง๐ญ๐ฎ๐ข๐ญ๐ข๐ฏ๐ž ๐ž๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž:
You run a mall. Your data has:
โ€บ Age
โ€บ Annual Income
โ€บ Spending Score

K-Means can divide customers into:
โคท Budget Shoppers
โคท Mid-Range Customers
โคท High-End Spenders

๐‡๐จ๐ฐ ๐ข๐ญ ๐ฐ๐จ๐ซ๐ค๐ฌ:
โ‘  Choose the number of clusters K
โ‘ก Randomly initialize K centroids
โ‘ข Assign each point to its nearest centroid
โ‘ฃ Move centroids to the mean of their assigned points
โ‘ค Repeat until centroids donโ€™t move (convergence)

๐Ž๐›๐ฃ๐ž๐œ๐ญ๐ข๐ฏ๐ž:
Minimize the total squared distance between data points and their cluster centroids
๐‰ = ฮฃโ€–๐ฑแตข - ฮผโฑผโ€–ยฒ
Where ๐ฑแตข = data point, ฮผโฑผ = cluster center

๐‡๐จ๐ฐ ๐ญ๐จ ๐ฉ๐ข๐œ๐ค ๐Š:
Use the Elbow Method
โคท Plot K vs. total within-cluster variance
โคท The โ€œelbowโ€ in the curve = ideal number of clusters

๐‚๐จ๐๐ž ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž (๐’๐œ๐ข๐ค๐ข๐ญ-๐‹๐ž๐š๐ซ๐ง):

from sklearn.cluster import KMeans
X = [[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]]
model = KMeans(n_clusters=2, random_state=0)
model.fit(X)
print(model.labels_)
print(model.cluster_centers_)


๐๐ž๐ฌ๐ญ ๐”๐ฌ๐ž ๐‚๐š๐ฌ๐ž๐ฌ:
โคท Customer segmentation
โคท Image compression
โคท Market analysis
โคท Social network analysis

๐‹๐ข๐ฆ๐ข๐ญ๐š๐ญ๐ข๐จ๐ง๐ฌ:
โ€บ Sensitive to outliers
โ€บ Requires you to predefine K
โ€บ Works best with spherical clusters

https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A ๐Ÿ“ฑ

BY Python | Machine Learning | Coding | R


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/CodeProgrammer/3768

View MORE
Open in Telegram


Python | Machine Learning | Coding | R Telegram | DID YOU KNOW?

Date: |

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Mr. Durov launched Telegram in late 2013 with his brother, Nikolai, just months before he was pushed out of VK, the Russian social-media platform he founded. Mr. Durov pitched his new appโ€”funded with the proceeds from the VK saleโ€”less as a business than as a way for people to send messages while avoiding government surveillance and censorship.

Python | Machine Learning | Coding | R from ye


Telegram Python | Machine Learning | Coding | R
FROM USA